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XSLT Three
Clearer Faster Wider Stronger

Liam Quin
Delightful Computing
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New In XSLT 3
● New data structures & types

● Dynamic First-Class Functions

● More than XML: text, HTML 5, JSON

● New XSLT instructions

● More succinct syntax (shorter, often clearer)

● And...
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More Highlights
● Streaming: Making the impossible possible

● Packages, and load dynamic XSLT or XQuery

● Many restrictions relaxed (shadow attributes, non-
node steps more)

● Try/Catch for greater robustness

● Very up-to-date, much goodness.
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Before We Start
● There’s new features in XSLT that lend themselves to 

a new style of writing stylesheets; it can be less like 
text processing and more like mathematics.

● When you use the new features, be aware of who will 
read and maintain the stylesheets. It might be you, a 
year or a decade from now.

● I call this the rhetorical nature of XSLT.
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XSLT 3 Overview
● Builds on XSLT 2 with xsl:sequence and types;

● Adds streaming, packaging, new data types, new 
ways of working, new ways to combine stylesheets;

● XPath got terser (both good and bad)

● Let’s start with the best of all: expand-text
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XSLT 1.0 Message
<xsl:message>

    <xsl:text>Darlings, I lost </xsl:text>

    <xsl:value-of select=”count($s1) – count(item/found)” />

    <xsl:text> </xsl:text>

    <xsl:value-of select=”$garment-plural” />

    <xsl:text>.</xsl:text>

</xsl:message>
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Now With XSLT 3
<xsl:message>Darlings, I lost {

    count($s1) – count(item/found)

} {$garment-plural}.</xsl:message>

Darlings, I lost 49 pairs of socks.
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Element Example
<xsl:template match=”anné”>

    <year>{ . }</year>

</xsl:template>

● {Computed text values} always make text nodes.
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Turn it on
● Add the attribute expand-text=”yes” to any XSLT 

element (including xsl:stylesheet);

● Turn it off with expand-text=”no” for a particular 
element and its children (e.g. one template);

● Use xsl:expand-text on a direct element 
constructor or extension element.
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Relaxing Restrictions
● XSLT 3 is more orthogonal – e.g. more instructions 

can have select attributes, and you can use self::foo in 
match patterns;

● Places where constant strings couldn’t be made into 
expressions (for not breaking styesheets) can now 
all take shadow attributes computed at compile time:
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Shadow Attributes
● Put an underscore (_) before an attribute name and it 

becomes an attribute value template evaluated at 
compile time, supplying the actual attribute value.

● Any parameters or variables referred to must be 
declared with static=”yes”

● Can use this e.g. to parameterize xsl:output doctype.
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A New XPath Operator
● XSLT 3 introduces =>

"David" => upper-case() => string-to-codepoints() => reverse() => 
codepoints-to-string()

Same as

codepoints-to-string(reverse(string-to-codepoints(upper-
case( “David”))))

● Easier to read, for people who remember what => does.
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Don’t overdo it
● $input => upper-case() => string-to-codepoints() 

=> reverse() => codepoints-to-string()
● Compare:

upper-case(my:string-reverse($input))

● This is about naming abstractions and making them 
explicit.
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The ! operator
● string-to-codepoints("David") ! count(.)   produces:

(1 1 1)

● string-to-codepoints("David") => count()   produces:
5

● This shows, ! works on each item in turn, like [ ], and 
=> works on the entire value at a time.
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New expression: for
● for $i in (1 to 30) return $i * $i
● for $a in /nuts, $b in (‘flour’, ‘surprise’)

return $a || ‘ ‘ || $b
– Hazelnut flour, Hazelnut surprise, Almond flour…

● if (//weather/snow) then “boots” else “barefoot”
– This was also in XSLT 2
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New Structures: Maps
● A map is an extensional function (mathematics) that says 

how you get from one set of values to another by explicitly 
listing all possibilities:

1  1, 2  4, 3  9, 4  16, 5  25, 6  36⇒ ⇒ ⇒ ⇒ ⇒ ⇒

● The keys and values can be anything:

“Toronto”, (“416,”, “905”)  ”DC”, “202”

● Maps are light-weight compared to element nodes.
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Maps in XPath
● Create:

map { “name” : “Boris”, “is-greedy” : true(),

  “socks” : map { “left” : “black”, ”right” : “grey” }

 }

● Type

map(xs:string, xs:integer)

use * to match any type, e.g. map(* )
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Making a map in XSLT:
<xsl:variable name=”Institutions” as=”map(*)”>

<xsl:map>

    <xsl:map-entry key=”BSI”

               select=” ‘Bavarian Sock Inspector’ “ />

    <xsl:map-entry key=”MARC”

                select=”Make Archivists Retch and Cry” />

</xsl:map>

</xsl:variable>
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Getting Stuff Out of a Map
● map:get(key)

● $mymap?simplekey   note, no quotes

● $mymap(key)(subkey)   for nested maps

● $mymap?(key, key…)   for any keys

● $mymap?(“key1”)?(“submapkey”)?foo

● $mymap?*[?submapkey = “value”]?foo
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New Data Type: Arrays
● Arrays are like sequences, except they do not get 

flattened automatically …

count( (1, 2, 3) )  3 ⇒ but count( [1, 2, 3])  1⇒

array:size([1, 2, ['Ringo', 'Paul', 'John', 'George'], 2]) 
 4⇒
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JSON Example
“config” : {

“users” : [

    { “name” : “Julia”, “wearsShoes” : “yes” },

    { “name” : “Tom” },

],

“modules” : [ . . . . 
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Arrays, Maps, JSON
● You can load a JSON file with json-doc() and get 

back a mix of arrays and maps.

● You can use json-to-xml() to get an XML 
representation, but only if the XML was made with 
xml-to-json() or uses the same schema.

● These functions take a map with options…
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JSON functions
● parse-json($string, $map)

● json-doc($href, $map)
– Like unparsed-text($href ) => parse-json($map)

● json-to-xml()

● xml-to-json()
– Requires the use of the W3C/XSLT JSON XML schema.
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Exploring
<fn:map xmlns:fn="http://www.w3.org/2005/xpath-functions">

    <fn:string key="test" escaped="false">foo/bar</fn:string>

</fn:map>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="3.0">

    <xsl:output method="text"/>

    <xsl:template match="/*">

       <xsl:value-of select="xml-to-json(.) => parse-json() =>

                     serialize(  map {'method': 'json'} ) "/>

    </xsl:template>

  </xsl:stylesheet>

https://xsltfiddle.liberty-development.net/bwdwrV/2

http://www.w3.org/1999/XSL/Transform
https://xsltfiddle.liberty-development.net/bwdwrV/2
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New Functions
● Streaming ( ) Functions≋

● Functions on maps and arrays

● Functions on Functions: apply(), fold-left() etc

● Collations, sorting;

● System: serialization, environment variables, etc

● Numeric (random numbers!) and other.
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EXPath Extension Functions
● The functions in EXPath are really useful, e.g.

– Read and write files

– Process binary files

– Read and write Zip archives (e.g. for epub files)

● They are native, not written in XSLT or XQuery

● Supported by BaseX and Saxon and others:

● https://expath.org/ …

https://expath.org/
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EXPath Modules
● File http://expath.org/spec/file

● Binary http://expath.org/spec/binary

● Archive: http://expath.org/spec/archive

● Newer versions of some of them: 
https://www.w3.org/community/expath/

http://expath.org/spec/file
http://expath.org/spec/binary
http://expath.org/spec/archive
https://www.w3.org/community/expath/
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try/catch
● Use xsl:try to evaluate expressions that might raise 

errors, and take special action based on the errors.
– E.g.: try casting an attribute to a dateTime or to an 

integer (better: use castable as or instance of );
– Open a file that might not be well-formed XML, 

without exiting on the error

● Not a way to cover up programming errors!
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New: xsl:iterate
● Like xsl:for-each, with a required select attribute;

● You can use xsl:break to end iteration;

● Call :xsl:next-iteration, possibly with new 
parameters, at any point, but only
– As the last instrution in an if or iterate body, or of a when 

or otherwise or try or catch
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Functions

Higher Order 
Functions
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Inline Function Expressions
let $f := function($e as element(sup)) as element(*)? {

    if ($e/sub) then $e/sub/node() else $e/node()

} return $f(//reference)

● Use functions in expressions, in select attributes, 
sequences, etc.

● It’s usually better to use xsl:function, but this way you 
can share XPath expressions with XQuery too.
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Function parts

function body goes here

parameters type
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The ? place-holder
● Use ?  to mark the arguments that you have not 

supplied yet:

let $slashify := string-join(?, “/”)

return $slashify( (“a”, “b”, “c”) )

● You can use this new feature with => too

● You could use $slashify with sort().
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Working With HTML
● Still no direct standard support for reading HTML

● You can write HTML 5 with xsl:output

● You can make an HTML 5 string with serialize()

● There are some new functions that make life a little 
easier.
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The HTML Collation
● In HTML, ASCII characters are case insensitive and 

others are not:

XRef eq xref

XRÉF ne xréf

● XSLT 3 introduces this as the HTML collation.

contains-token(@class, ‘to-ref ’)

contains-token(@class, $token, $collation)



36

Other new features for Web work
● Use parse-ietf-date() to convert an IETF-style 

timestamp date (Wed Nov  6 13:58:49 EST 2019) into a 
dateTime object;

● These dates are found in HTTP headers, email 
headers and so forth;

● Use expand-text=”no” for embedded JavaScript and 
CSS, so { } are not special. …
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Web features continued
● New function get-environment-variable() helpful 

with the CGI interface in some environments;

● Can now process text documents a line at a time 
with unparsed-text-lines()

● “http://www.w3.org/1999/xhtml”body syntax 
(EQNames) and *:body
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Matching Any Type
● You can match any sort of item now, not just nodes;

● A template that matches integers? For-each that 
iterates over a sequence of tokens from @class?

● Combine with Schema Typing and have templates 
matching e.g. element(*, my:explainer)

● Watch that there’s not always a useful context item
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Stronger type-checking
● Declare the required type of the context item in a 

template with xsl:context-item, to get errors if a 
template is called unexpectedly;

● All built-in XSD types available, along with schema-less 
lax validation

● Use as attributes widely and find problems sooner

● xsl:message terminate=”yes”
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Reminder; New expressions
● Map constructors map { …. }

● Array constructors [ … ]

● Named function references and inline function 
expressions dynamic function call

● for $town in (…..) return …. 

● Reminder: XPath 2 already had if (a) then b else c
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The most powerful new function

fn:transform()
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What is fn:transform()?
● A function in XPath that calls XSLT, runs a 

transformation, and returns the result.

● So you can write, for example,

<xsl:sequence select=”fn:transform(…., .)” />
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Some uses
● Processing lots of files (e.g. test suite) without 

restarting Java on each one;

● XProc-like pipelines;

● Simplifying stylesheets by replacing modes;

● Replacing ant or other build systems.
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Streaming
● A non-streaming processor reads its input and then 

processes it.

● A streaming processor reads input as it arrives, e.g. 
over a network or from disk, and processes it as it 
becomes available.
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Going Further
● xsl:stream

● xsl:source-document and xsl:iterate

● xsl:where-populated, on-empty, on-non-empty
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xsl:where-populated
Wrapper appears only if it is not empty:

<xsl:where-populated>

  <fn-wrap>

    <xsl:apply-templates select=”fn”/>

  </fn-wrap>

</xsl:where-populated>
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Xsl:on-empty
● Triggered if nothing before it made anything

Must be last in its sequence constructor.
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Xsl:on-non-empty
● Only evaluated if a sibling made something.

● Does not have to be last.

● See https://www.w3.org/TR/xslt-30/#iteratewher 
for an example combining where-populated, on-
empty and on-non-empty.

● Useful outside streaming too!

https://www.w3.org/TR/xslt-30/#iteratewher
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Packages
● Not yet widely used in public;

● Can be a way to help manage configurations and versions 
in a corporate/enterprise or large closed environment;

● Packages can be compiled separately & reused

● Packages located using inplementation-specific 
mechanism (e.g. conf file for Saxon)
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xsl:use-package 
See https://stackoverflow.com/questions/57478467/

xslt-3-how-to-write-a-package

for a worked example with Saxon and the Saxon 
configuration file.

stack overflow page

https://stackoverflow.com/questions/57478467/xslt-3-how-to-write-a-package
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load-xquery-module()
● Although there’s no fn:query() you can load an 

XQuery module; it appears as a map, and you can 
ask it for functions and call them.

● This depends on your XSLT implementation also 
supporting XQuery.

● Saxon does, but not with a database.
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Packages and system dependencies
● You can control system dependencies by adding a 

use-when attribute to any XSLT element, or xsl:use-
when to other elements.

● The use-when attribute value is a static expression. 
You can use system-property but not parameters.

● You can also use XSLT 3 “static variables” …
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Summary: XSLT 3 Brings
● New readability features (esp. expand-text)

● New functions and operators

● Ability to call XSLT and XQuery with fn:transform 
and fn:load-query-module

● Streaming

● A more complete language
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Thank you

Liam Quin, Delightful Computing

Milford, Ontario
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