
1

XSLT Three
Clearer Faster Wider Stronger

Liam Quin
Delightful Computing

2

New In XSLT 3
● New data structures & types

● Dynamic First-Class Functions

● More than XML: text, HTML 5, JSON

● New XSLT instructions

● More succinct syntax (shorter, often clearer)

● And...

3

More Highlights
● Streaming: Making the impossible possible

● Packages, and load dynamic XSLT or XQuery

● Many restrictions relaxed (shadow attributes, non-
node steps more)

● Try/Catch for greater robustness

● Very up-to-date, much goodness.

4

Before We Start
● There’s new features in XSLT that lend themselves to

a new style of writing stylesheets; it can be less like
text processing and more like mathematics.

● When you use the new features, be aware of who will
read and maintain the stylesheets. It might be you, a
year or a decade from now.

● I call this the rhetorical nature of XSLT.

5

XSLT 3 Overview
● Builds on XSLT 2 with xsl:sequence and types;

● Adds streaming, packaging, new data types, new
ways of working, new ways to combine stylesheets;

● XPath got terser (both good and bad)

● Let’s start with the best of all: expand-text

6

XSLT 1.0 Message
<xsl:message>

 <xsl:text>Darlings, I lost </xsl:text>

 <xsl:value-of select=”count($s1) – count(item/found)” />

 <xsl:text> </xsl:text>

 <xsl:value-of select=”$garment-plural” />

 <xsl:text>.</xsl:text>

</xsl:message>

7

Now With XSLT 3
<xsl:message>Darlings, I lost {

 count($s1) – count(item/found)

} {$garment-plural}.</xsl:message>

Darlings, I lost 49 pairs of socks.

8

Element Example
<xsl:template match=”anné”>

 <year>{ . }</year>

</xsl:template>

● {Computed text values} always make text nodes.

9

Turn it on
● Add the attribute expand-text=”yes” to any XSLT

element (including xsl:stylesheet);

● Turn it off with expand-text=”no” for a particular
element and its children (e.g. one template);

● Use xsl:expand-text on a direct element
constructor or extension element.

10

Relaxing Restrictions
● XSLT 3 is more orthogonal – e.g. more instructions

can have select attributes, and you can use self::foo in
match patterns;

● Places where constant strings couldn’t be made into
expressions (for not breaking styesheets) can now
all take shadow attributes computed at compile time:

11

Shadow Attributes
● Put an underscore (_) before an attribute name and it

becomes an attribute value template evaluated at
compile time, supplying the actual attribute value.

● Any parameters or variables referred to must be
declared with static=”yes”

● Can use this e.g. to parameterize xsl:output doctype.

12

A New XPath Operator
● XSLT 3 introduces =>

"David" => upper-case() => string-to-codepoints() => reverse() =>
codepoints-to-string()

Same as

codepoints-to-string(reverse(string-to-codepoints(upper-
case(“David”))))

● Easier to read, for people who remember what => does.

13

Don’t overdo it
● $input => upper-case() => string-to-codepoints()

=> reverse() => codepoints-to-string()
● Compare:

upper-case(my:string-reverse($input))

● This is about naming abstractions and making them
explicit.

14

The ! operator
● string-to-codepoints("David") ! count(.) produces:

(1 1 1)

● string-to-codepoints("David") => count() produces:
5

● This shows, ! works on each item in turn, like [], and
=> works on the entire value at a time.

15

New expression: for
● for $i in (1 to 30) return $i * $i
● for $a in /nuts, $b in (‘flour’, ‘surprise’)

return $a || ‘ ‘ || $b
– Hazelnut flour, Hazelnut surprise, Almond flour…

● if (//weather/snow) then “boots” else “barefoot”
– This was also in XSLT 2

16

New Structures: Maps
● A map is an extensional function (mathematics) that says

how you get from one set of values to another by explicitly
listing all possibilities:

1 1, 2 4, 3 9, 4 16, 5 25, 6 36⇒ ⇒ ⇒ ⇒ ⇒ ⇒

● The keys and values can be anything:

“Toronto”, (“416,”, “905”) ”DC”, “202”

● Maps are light-weight compared to element nodes.

17

Maps in XPath
● Create:

map { “name” : “Boris”, “is-greedy” : true(),

 “socks” : map { “left” : “black”, ”right” : “grey” }

 }

● Type

map(xs:string, xs:integer)

use * to match any type, e.g. map(*)

18

Making a map in XSLT:
<xsl:variable name=”Institutions” as=”map(*)”>

<xsl:map>

 <xsl:map-entry key=”BSI”

 select=” ‘Bavarian Sock Inspector’ “ />

 <xsl:map-entry key=”MARC”

 select=”Make Archivists Retch and Cry” />

</xsl:map>

</xsl:variable>

19

Getting Stuff Out of a Map
● map:get(key)

● $mymap?simplekey note, no quotes

● $mymap(key)(subkey) for nested maps

● $mymap?(key, key…) for any keys

● $mymap?(“key1”)?(“submapkey”)?foo

● $mymap?*[?submapkey = “value”]?foo

20

New Data Type: Arrays
● Arrays are like sequences, except they do not get

flattened automatically …

count((1, 2, 3)) 3 ⇒ but count([1, 2, 3]) 1⇒

array:size([1, 2, ['Ringo', 'Paul', 'John', 'George'], 2])
 4⇒

21

JSON Example
“config” : {

“users” : [

 { “name” : “Julia”, “wearsShoes” : “yes” },

 { “name” : “Tom” },

],

“modules” : [. . . .

22

Arrays, Maps, JSON
● You can load a JSON file with json-doc() and get

back a mix of arrays and maps.

● You can use json-to-xml() to get an XML
representation, but only if the XML was made with
xml-to-json() or uses the same schema.

● These functions take a map with options…

23

JSON functions
● parse-json($string, $map)

● json-doc($href, $map)
– Like unparsed-text($href) => parse-json($map)

● json-to-xml()

● xml-to-json()
– Requires the use of the W3C/XSLT JSON XML schema.

24

Exploring
<fn:map xmlns:fn="http://www.w3.org/2005/xpath-functions">

 <fn:string key="test" escaped="false">foo/bar</fn:string>

</fn:map>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="3.0">

 <xsl:output method="text"/>

 <xsl:template match="/*">

 <xsl:value-of select="xml-to-json(.) => parse-json() =>

 serialize(map {'method': 'json'}) "/>

 </xsl:template>

 </xsl:stylesheet>

https://xsltfiddle.liberty-development.net/bwdwrV/2

http://www.w3.org/1999/XSL/Transform
https://xsltfiddle.liberty-development.net/bwdwrV/2

25

New Functions
● Streaming () Functions≋

● Functions on maps and arrays

● Functions on Functions: apply(), fold-left() etc

● Collations, sorting;

● System: serialization, environment variables, etc

● Numeric (random numbers!) and other.

26

EXPath Extension Functions
● The functions in EXPath are really useful, e.g.

– Read and write files

– Process binary files

– Read and write Zip archives (e.g. for epub files)

● They are native, not written in XSLT or XQuery

● Supported by BaseX and Saxon and others:

● https://expath.org/ …

https://expath.org/

27

EXPath Modules
● File http://expath.org/spec/file

● Binary http://expath.org/spec/binary

● Archive: http://expath.org/spec/archive

● Newer versions of some of them:
https://www.w3.org/community/expath/

http://expath.org/spec/file
http://expath.org/spec/binary
http://expath.org/spec/archive
https://www.w3.org/community/expath/

28

try/catch
● Use xsl:try to evaluate expressions that might raise

errors, and take special action based on the errors.
– E.g.: try casting an attribute to a dateTime or to an

integer (better: use castable as or instance of);
– Open a file that might not be well-formed XML,

without exiting on the error

● Not a way to cover up programming errors!

29

New: xsl:iterate
● Like xsl:for-each, with a required select attribute;

● You can use xsl:break to end iteration;

● Call :xsl:next-iteration, possibly with new
parameters, at any point, but only
– As the last instrution in an if or iterate body, or of a when

or otherwise or try or catch

 30

Functions

Higher Order
Functions

 31

Inline Function Expressions
let $f := function($e as element(sup)) as element(*)? {

 if ($e/sub) then $e/sub/node() else $e/node()

} return $f(//reference)

● Use functions in expressions, in select attributes,
sequences, etc.

● It’s usually better to use xsl:function, but this way you
can share XPath expressions with XQuery too.

 32

Function parts

function body goes here

parameters type

 33

The ? place-holder
● Use ? to mark the arguments that you have not

supplied yet:

let $slashify := string-join(?, “/”)

return $slashify((“a”, “b”, “c”))

● You can use this new feature with => too

● You could use $slashify with sort().

34

Working With HTML
● Still no direct standard support for reading HTML

● You can write HTML 5 with xsl:output

● You can make an HTML 5 string with serialize()

● There are some new functions that make life a little
easier.

35

The HTML Collation
● In HTML, ASCII characters are case insensitive and

others are not:

XRef eq xref

XRÉF ne xréf

● XSLT 3 introduces this as the HTML collation.

contains-token(@class, ‘to-ref ’)

contains-token(@class, $token, $collation)

36

Other new features for Web work
● Use parse-ietf-date() to convert an IETF-style

timestamp date (Wed Nov 6 13:58:49 EST 2019) into a
dateTime object;

● These dates are found in HTTP headers, email
headers and so forth;

● Use expand-text=”no” for embedded JavaScript and
CSS, so { } are not special. …

37

Web features continued
● New function get-environment-variable() helpful

with the CGI interface in some environments;

● Can now process text documents a line at a time
with unparsed-text-lines()

● “http://www.w3.org/1999/xhtml”body syntax
(EQNames) and *:body

38

Matching Any Type
● You can match any sort of item now, not just nodes;

● A template that matches integers? For-each that
iterates over a sequence of tokens from @class?

● Combine with Schema Typing and have templates
matching e.g. element(*, my:explainer)

● Watch that there’s not always a useful context item

39

Stronger type-checking
● Declare the required type of the context item in a

template with xsl:context-item, to get errors if a
template is called unexpectedly;

● All built-in XSD types available, along with schema-less
lax validation

● Use as attributes widely and find problems sooner

● xsl:message terminate=”yes”

40

Reminder; New expressions
● Map constructors map { …. }

● Array constructors […]

● Named function references and inline function
expressions dynamic function call

● for $town in (…..) return ….

● Reminder: XPath 2 already had if (a) then b else c

41

The most powerful new function

fn:transform()

42

What is fn:transform()?
● A function in XPath that calls XSLT, runs a

transformation, and returns the result.

● So you can write, for example,

<xsl:sequence select=”fn:transform(…., .)” />

43

Some uses
● Processing lots of files (e.g. test suite) without

restarting Java on each one;

● XProc-like pipelines;

● Simplifying stylesheets by replacing modes;

● Replacing ant or other build systems.

44

Streaming
● A non-streaming processor reads its input and then

processes it.

● A streaming processor reads input as it arrives, e.g.
over a network or from disk, and processes it as it
becomes available.

45

Going Further
● xsl:stream

● xsl:source-document and xsl:iterate

● xsl:where-populated, on-empty, on-non-empty

46

xsl:where-populated
Wrapper appears only if it is not empty:

<xsl:where-populated>

 <fn-wrap>

 <xsl:apply-templates select=”fn”/>

 </fn-wrap>

</xsl:where-populated>

47

Xsl:on-empty
● Triggered if nothing before it made anything

Must be last in its sequence constructor.

48

Xsl:on-non-empty
● Only evaluated if a sibling made something.

● Does not have to be last.

● See https://www.w3.org/TR/xslt-30/#iteratewher
for an example combining where-populated, on-
empty and on-non-empty.

● Useful outside streaming too!

https://www.w3.org/TR/xslt-30/#iteratewher

49

Packages
● Not yet widely used in public;

● Can be a way to help manage configurations and versions
in a corporate/enterprise or large closed environment;

● Packages can be compiled separately & reused

● Packages located using inplementation-specific
mechanism (e.g. conf file for Saxon)

50

xsl:use-package
See https://stackoverflow.com/questions/57478467/

xslt-3-how-to-write-a-package

for a worked example with Saxon and the Saxon
configuration file.

stack overflow page

https://stackoverflow.com/questions/57478467/xslt-3-how-to-write-a-package

51

load-xquery-module()
● Although there’s no fn:query() you can load an

XQuery module; it appears as a map, and you can
ask it for functions and call them.

● This depends on your XSLT implementation also
supporting XQuery.

● Saxon does, but not with a database.

52

Packages and system dependencies
● You can control system dependencies by adding a

use-when attribute to any XSLT element, or xsl:use-
when to other elements.

● The use-when attribute value is a static expression.
You can use system-property but not parameters.

● You can also use XSLT 3 “static variables” …

53

Summary: XSLT 3 Brings
● New readability features (esp. expand-text)

● New functions and operators

● Ability to call XSLT and XQuery with fn:transform
and fn:load-query-module

● Streaming

● A more complete language

54

Thank you

Liam Quin, Delightful Computing

Milford, Ontario

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

